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DEVELOPMENT OF THREE -DIMENSIONAL PRESSURE -DISTRIBUTION 

FUNCTIONS FOR LIFTING SURFACES WITH TRAILING-EDGE CONTROLS 

BASED ON THE INTEGRAL EQUATION FOR SUBSONIC FLOW 

By Alfred0 Navarro Crespo* and Herbert J .  Cunningham 
Langley Research Center 

SUMMARY 

The problem of calculating subsonic pressure distributions on thin lifting surfaces 
with slightly deflected or deformed control surfaces is studied by the approach of the 
linear-integral-equation procedure. The results are expected to find application to  the 
oscillating case. The singularities introduced in the pressure distribution by the deflec- 
tion of a control surface are studied by an analogy between the fluid flow suddenly 
deflected when passing over the hinge of a control surface and the flow also suddenly. 
deflected at the sharp (zero-radius) leading edge of a wing with symmetric thickness, 
flying with zero angle of attack at subsonic speed. 

As a result of this study, a suitable set  of loading functions (or modes of pressure) 
has been generated to  represent the influence of the control surfaces on the pressure 
distribution on the wing. These loading functions can be applied to  any wing planform, 
and once they have been integrated through the mentioned integral equation, they produce 
a set of modes of downwash which has a fairly good capability to represent the first-order 
discontinuity that the actual downwash distribution displays along the contours of the con- 
t rol  surfaces. These resulting modes of downwash should improve the conditioning of 
the matrix equation to  which the associated collocation procedure leads, in comparison 
with previously used pressure modes. This effect is very important in the numerical 
calculations. 

INTRODUCTION 

A great deal of work has already been done on the problem of calculating steady or 
unsteady aerodynamic pressure distributions on lifting surfaces in subsonic flow. (See, 
for example, refs. 1 to 20.) As a result of this work, it is possible at present to predict 
with fairly good accuracy the subsonic aerodynamic loads on a thin wing of any planform, 
if  the frequency of oscillation of the wing is not too high and the Mach number is not too 
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close to  unity. Different improvements of the already well-established calculation pro- 
cedures have been proposed (refs. 12 to 16) and useful work has also been done on the 
case of nonplanar lifting surfaces (e.g., refs. 19 and 20.) 

But there are problems associated with the lifting-surface theory which still remain 
unsolved or a re  in an early stage for their practical solution. Such is the case of the 
problem of determining pressure distributions on thin wings of arbitrary planform with 
slightly deflected o r  oscillating control surfaces. An important problem of the latter 
type is the flutter of thin wings with control surfaces. This problem should be amenable 
to linear-theory analysis because just when this instability appears ~ it is very possible 
that the flow can still be considered as a potential flow and the perturbations as small. 

For many years,  methods of calculation based on the lifting-line theory (or the 
strip theory) have been used to  determine the aerodynamic loading that the control sur-  
faces produce (refs. 21 and 22). Those procedures, however, have proven to  be inade- 
quate for low-aspect-ratio wings and partial-span flaps in common use. 

The reverse-flow theorem (ref. 7) has provided a useful tool for determining gen- 
eralized aerodynamic forces on wings of any planform with control surfaces. (See sec- 
tion 11 of ref. 4.) But its use does not make possible the calculation of the pressure 
distribution itself. 

Many attempts have been made to solve the wing-control-surface problem by 
employing the approach successfully used to solve the lifting-surface problem for the 
wing alone. (For the latter, see  refs. 1 to  6,  for  example.) Briefly, the procedure is as 
follows: In the integral equation that relates the usually unknown aerodynamic lifting 
pressure and the usually known downwash distribution, the pressure distribution is 
represented by a truncated ser ies  expansion of loading terms (or pressure modes) with 
the te rms  multiplied by their respective weighting factors, which become the unknowns 
of the problem. Then, the weighting factors are determined by a collocation or  a least- 
squares-error procedure. 

In applying this approach to wings with controls the logarithmic pressure singular- 
ity at the hinge line indicated by two-dimensional theory (e.g., ref. 23) has usually been 
accounted for as in reference 24, for example. For partial-span controls, difficulties 
have been encountered in accounting for the ends of the controls and most results have 
not been satisfactory enough to  be published. The reason for  much of these poor results, 
as experience from the present investigation has shown, is that multiplication of the two- 
dimensional chordwise pressure distribution by separated-variable functions of chord and 
span variables (notably power series) produces individual downwash modes that in linear 
combination have little capability of representing even the statically deflected control. 
Furthermore, the individual higher-order downwash modes tend to  be too similar in shape 
and thus contribute to a poor conditioning of the downwash matrix in the collocation 
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process. A recent report (ref. 25) describes results of an effort of this general type. 
Fairly good success was achieved, but some results displayed a noticeably errat ic  behav- 
ior as the number of pressure modes was increased. 

The conclusion is reached herein that, in general, the two-dimensional chordwise 
distribution of pressure does not reliably represent the pressure distribution for a 
finite-span control. New pressure-distribution functions, developed from three- 
dimensional theory, are needed. 

A new insight to  the problem has been given by Landahl in reference 26. The local 
flow at points located near the control surface hinge, side edges, and corners was studied 
by use of the method of matched asymptotic expansions. That study provides very use- 
ful information which can be applied to  originate the first-order mode of pressure asso- 
ciated with the control-surface deflection. 

The control surface treated herein is the trailing-edge, flap type with sealed 
leading-edge hinge and no gap at inboard and outboard edges. The te rms  "control sur-  
face" and "flap" are used interchangeably. Adaptation could be readily made to  the 
geometry of leading-edge controls, but the present report t reats  only trailing-edge 
controls. 

The aim of the present paper has been to  originate a set  of pressure modes which 
can be applied to any planform with statically deflected and deformed control surfaces 
and, which when transformed through the integral equation previously mentioned, can 
produce a set of downwash modes able to represent adequately, with only a few terms,  
actual downwash distributions and, at the same time, feature strong linear independence 
of the downwash equations. The results a r e  expected to  find application to  oscillating 
as wel l  as to  steady-state problems. 

The way to  originate these modes of pressure has been by the use of an analogy 
between the fluid flow suddenly deflected at a control-surface hinge on the upper or lower 
side of a lifting surface and the flow also suddenly deflected by the sharp (zero-radius) 
leading edge of a wing of symmetric thickness flying at zero angle of attack. The down- 
wash distribution on this wing of symmetric thickness is expanded in a ser ies  of orthog- 
onal terms. This originates a resulting pressure distribution also expanded in a set of 
t e rms  which can be used to  define appropriate modes of pressure needed in the lifting- 
surface case. 

The fundamental or  first-order term obtained in this way displays a logarithmic 
singularity which is identical with that found in reference 26. Appropriate modifications 
have been introduced to  account for the wing-edge effects as well as the effect of a swept- 
back control-surface hinge, which appears to be very appreciable. The higher order 
modes of pressure have been generated by following a systematic procedure of modifying 
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the first-order term. A parameter Es has been introduced that, if given a suitable 
value, has the effect of improving the downwash distribution produced by the first mode 
of pressure. The suitability of the pressure-mode functions is assessed by plotting 
their associated downwashes and making a visual comparison of these downwashes with 
desired downwashes and with each other. 

Certain auxiliary functions are given in appendixes A and B, and appendix C 
describes the numerical integrations employed. 

SYMBOLS 

* 
A bar over a coordinate variable indicates that it is dimensional. 

anm weighting factors for wing modes of lifting pressure 

column matrix of subcolumns an, and brim 

Anm(07q) wing modes (distributions) of lifting pressure (see eqs. (3) and (5)) 

b(V) local wing semichord 

bnm weighting factors for control-surface, o r  flap, modes of lifting pressure 

B,,(O,q) flap modes (distributions) of lifting pressure (see eq. (3)) 

Bnm(O,q) (1) preliminary exploratory choice for Bnm (see eq. (6)) based on two- 
dimensional flow 

Bhy(8,q) second exploratory choice for Boo(8,q) (eq. (21b)) without the empiri- 
cal modifications that lead to equation (24) 

Boo (3) (O,q) designation for Boo(6,q) of equation (24) when applied to a swept flap, but 
without the sweep effect included in equations (28) 

Bio(6,q), B~O(~, ' ??)  incomplete exploratory flap modes of pressure (see eq. (36)) 

cC control-surface chord length 

Cnr(8,q) spanwise symmetric lift distribution functions contained in Bnm(9,q) 
(see eqs. (30) to (35)) 
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C~,,(x,?,z), C~,,(x,f,z) perturbation-pressure distribution functions that contain 
and account for leading-edge and trailing-edge singulari- 
ties, respectively, of the thick-wing analogy (see eq. (14) 
and appendix B) 

dnr constant coefficients (see eq. (11)) 

ES span expansion-contraction factor (see eq. (23d)) 

Fnr(q;X,Y) chordwise integral (eq. (C2)) 

* 
Fnr(q;x,y) chordwise integral (see eq. (C8)) 

Hnr(€I,q) defined with equation (610) 

k bOW reduced frequency, referred to bo, k = - U 

K kernel function of the integral equation (l), K = K@I,x-<,s(y-qg 

- 
K dimensionless part of K = K as applied to equation (CI), 
- 

bO2s2(y - ,q)2 
- 
K qM,x-<(e),s(Y-rlg 

1 wing semispan (see sketch 2) 

LAn( e),  LBn( e)  chordwise distributions of lifting pressure for wing modes Anm( e,q) 
(see eq. (5)) and flap modes Bnm(e,q) (see eq. (7)), respectively 

"C slope of parallel leading and trailing edges of swept control surface whether 
part  of a wing or not (see sketch 6 and eqs. (25) and (29)) 

M Mach number of unperturbed air stream 

Nnr(e,ec,q) distribution functions in the lift (see eqs. (C5) to (C7)) 

No( e,@, ,d distribution function in the lift (see eqs. (C4)) 

Ap(5,q) lifting pressure distribution (eqs. (1) and (3)), positive up, 

AP(<,V) = PZ(t'77) - P J m  
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P&5,77)7 PU(5,d pressure perturbation on lower and upper sides, respectively, 
of wing surface 

- - -  
PS(X7Y ,z) pressure perturbation upon and originated by wing of z-symmetrical 

thickness 

PHs (2 ,? ,Z) local distribukion of ps(x,y,Z) in vicinity of wing leading edge 
(see eq. (20)) 

Pn[ 1, P,[ ] Legendre polynomial of first kind of degree n and r ,  respectively, 
and argument [ ] (see eq. (11)) 

Qr-l( ) polynomial of degree r - 1 and argument ( ) introduced in equation (17) 
and listed in appendix A 

s = l/bo 

Se effective value of s (see eq. (23d)), se = sEs 

SW planform area of full-span wing 

U speed of unperturbed air stream 

W(X7Y) downwash distribution at wing surface, positive up (see eq. (1)) 

illustrative downwash distributions (see sketches 3 and 4) 

ws(x,y ,O) downwash distribution on upper side of wing of z-symmetrical thickness 

matrix column of downwash ratios w/U at control points (eqs. (8)) (w> 

WAnm(X 7Y) WBnm (X 7Y) distribution of downwash ratio w/U at wing surface 
originated by wing modes and flap modes of pressure,  
r e  spe ct ivel y 
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matrix of values of WA,,(X,Y) and WB,,(X,Y) at control points 
(see eqs. (8)) 

CWI 

x,y,z dimensional rectangular coordinates (see sketch 1) 

X,Y ,z dimensionless coordinates, x = :/bo, y = y/Z, z = ;/bo 

Zc(f), xc(y) chordwise coordinate of control-surface hinge line 

Zm(Y), xm(Y) chordwise coordinate of wing midchord line 

X distribution function introduced into flap lifting-pressure modes (see 
eqs. (23) and (29)), X = X(6,0c,q) 

XT see equation (23c), XT = X(.rr,Bc,q) 

- 
spanwise coordinate of inboard end of partial-span flap (see sketches 2 Ycl’ yc1 

and 6) and of left end of full-span flap 

fc2, yc2 spanwise coordinate of outboard end of partial-span flap (see sketches 2 
and 6) and of right end of full-span flap 

yc1 +yc2  
2 

spanwise midpoint coordinate of flap, yco = yco 

l?,(%-i,Y,B) distribution function in perturbation pressure (see eqs. (15) and (16)) 

- 2 6, = - - 

6, = 

yc2 - yc1 

yc2 - yc1 

- 
= 6& 2 

E infinitesimal computational quantity (see eq. (C16)) 
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A sweep angle of wing quarter-chord line, positive for sweepback 

x taper ratio, bt/bo 

A(Oc,q) see equations (C12) and (C13) 

- 
p = ii, - xc 

vr(E) distribution function (see eq. (17) and appendix A) 

IIo(q), II(8,8C7q) distribution functions (see eqs. (28)) 

P mass density of unperturbed air stream 

e angular chordwise coordinate (see eq. (4)) 

value of 0 at flap hinge line 

value of 8 at flap midchord point i.e., at tco) 
ecO(77) ( 
&(17) as in reference 1, the value of 0 on span station q at its intersection 

with the line that passes through the control point (x,y) and is parallel 
to  the y-axis 

E,t,t(O) dimensional and dimensionless dummy variables for 2 and x,  
respectively, and with same system of subscripts (see eq. (4)) 

6 7 1 7  dimensional and dimensionless (q  = r/Z) dummy variables for and y, 
respectively, and with same system of subscripts 

+(e74 see equation (C11) 

w circular frequency of oscillation 

Subscripts : 

C flap leading edge (hinge line) 
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c1 

c2 

CO 

m 

t 

T 

0 

inboard end of partial-span flap and left end of full-span flap 

outboard or right end of flap 

midpoint o r  midstation on flap 

wing midchord line 

wing tip 

trailing edge 

wing root or plane of symmetry 

ANALYTICAL DEVELOPMENT 

Formulation of the Problem 

The purpose of this investigation has been to  arrive at some practical method of 
calculating the steady pressure distribution on elastic wings with slightly deflected or 
deformed control surfaces in subsonic flow. For this research, the following linearizing 
assumptions were made: a potential flow, an ideal fluid, and small perturbations from 
the main stream. 

These assumptions could seem unrealistic under actual conditions where deflected 
or  deformed control surfaces are involved. However, accurate solutions of the three- 
dimensional flow equations, under the mentioned idealized conditions, should be useful 
for the theoretical study and calculation of many aerodynamic and aeroelastic phenomena, 
such as rolling effectiveness, loss of control effectiveness, hinge moments, and so forth, 
where small deflections of the control surfaces can play an important role. 

In the present approach to  the problem, a generalization has been made from the 
common procedure of calculating pressure distribdtions on lifting surfaces without con- 
t rols  to the case of control surfaces of immediate interest. That means that deforma- 
tions of the idealized wing surface have been considered, and the development is based on 
the well-known integral equation: 

where Sw is the wing surface. Equation (1) is the steady-state equivalent of equa- 
tion (1) of reference l. A collocation procedure is used in order to  get its numerical 
inversion. 
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The surface integrations have been performed following the technique exposed in 

Z trol  surfaces introduce in the function Ap( 5 ,$. 
reference 1, with proper modifications which take care of the singularities that the con- 

- 
The notations are also analogous to those used 
in reference 1. 

The adopted coordinate system is repre- 
sented in sketch 1, where Sw represents the 

7 idealized wing surface, which lies very close to 
the xy-plane. The function Ap(5,q) is defined 

pressure difference between the lower and upper 
surfaces of the wing. By definition, the function 
is positive when it produces a local lifting force 
directed towards the positive sense of the z-axis. 

Consistent with the adopted coordinate system, w(x,y) is also positive upwards. The 
kernel function K is defined as in reference 1. 

/ Y 
/ 

as AP(t,rl) = P&8) - PU(S,17), that is, the local 

- 
X 

Sketch 1 

The planform of the wing and control surface considered is represented in sketch 2, 
its geometry being fixed by A and the parameters 

(2) 

The formulation and the computing program could 
be adapted to  a more general planform, in partic- 
ular to  tapered controls, but the one programed is 
general enough for the present purpose. 

- 
Y The main feature that a control surface intro- 

duces in the problem of calculating pressure dis- 
tributions on a wing, under the hypothesis of a lin- 
earized flow (M < 1) and idealized conditions of a 
sealed hinge and side edges, is a distribution of 
logarithmic singularity on such a hinge. If this 
singularity is approximated by the usual pressure 
mode ser ies  associated with a wing without con- 
trols,  slow convergence may result as the number 
of modes is increased, or  the series may be found 

with other possible problems associated with gaps 
- to be inapplicable. This circumstance, together X 

Sketch 2 
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and possible flow separations, makes it necessary to treat the case of control surfaces 
with special care. 

Following formulation of the idealized problem through integral equation (1) , atten- 
tion focuses on a search for a suitable analytical representation of the function Ap(5,q) 
and on accurate numerical integration over the wing surface Sw. For a given downwash 
distribution w(x,y) over the wing, the function Ap(5,q) should be represented by a 
suitable series expansion which converges as quickly as possible toward the exact solu- 
tion of the integral equation and produces at the same time a good conditioning of the 
matrix of the set of linear algebraic equations to  which the collocation procedure leads. 
Achievement of these two properties would mean that the kernel transforms of the pres- 
sure  modes would yield a series of downwash modes which should combine to give rapid 
convergence toward a prescribed downwash w(x,y). In order to determine how accurate 
this approximate solution is, the resulting downwash distribution is calculated and visu- 
ally compared with the desired downwash w(x,y). 

In order to represent conveniently the loading due to both wing modes and flap modes 
of pressure,  a pressure expansion is chosen of the form 

where the transformation 

has been introduced as in reference 1. Although the pressure modes are the products of 

times Anm(0,l-r) and times Bnm(e,q), for convenience in the rest of the b 
report they are referred to simply as Anm(0,q) for wing modes and Bnm(O,q) for flap 
modes and they can be combined additively because the governing equation has been lin- 
earized. The second subscript m is even for spanwise symmetry and odd for spanwise 
antisymmetry of the functions. 

The wing modes can be defined in any conventional form. (See refs. 1 €0 5.) As in 
reference 1, the following form was chosen: 

Anm(e,q) = q m ~ ~ , ( 0 )  
where 

and even and odd m apply to spanwise symmetry and antisymmetry, respectively. 
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Equations (5) represent the pressure distributions over the complete lifting surface 
without the influence of flap deflection. Since the highest order singularity in 
function is the same for  both steady and unsteady flow, the singularities in the 
distributions can be expected to be the same for both stea 
the pressure modes appropriate to steady flow are expected t o  be applicabl 
flow as well. 

nsteady flow. Hence, 

The flap modes are developed in the rest of the present report. The coefficients 
an, and bnm are the initially unknown weighting factors in the pressure distribution. 

Preliminary Investigation Based on Separation of Variables 

In preliminary calculations the special case was studied of M = 0 and a flat wing 
of rectangular planform with an aspect ratio of 4 (s = 4, X = 1, and A = 0) and a deflected 
full-span flap hinged at 75 percent of the wing chord. Subsequent discussion in this sec- 
tion related to the inadequacy of the two-dimensional type of loading function is based on 
these calculations. 

In order to gain insight into the problem, begin by 
the flap loading functions: 

assuming the following form for 

(6) 

(the notation BLi(0,q) is used to distinguish these as exploratory modes ) 
1 1 - cos@ - 0,) LB,(Q) = -(cos 0 - cos In 

22n-1 [COS e - COS 

where 8, is the coordinate of the flap hinge. For n = 0, 1, and 2,  these modes con- 
form to the velocity potentials in reference 23. 

The downwash input w(x,y) considered in the calculations is 0 over the wing 
and 1 over the flap. Eighteen modes of pressure were used to represent the pressure 
distribution: All combinations of n = 0, 1, 2 and m = 0, 2,  4 for  both kinds of pres- 
sure  modes Anm(0,v) and Bnm(0,q). 

The numerical inversion of the integral equation (eq. (1)) relating w(x,y) with 
Ap(<,q) was programed on a computer, and the resulting pressure distribution with the 
weighting factors now known was the new input required to recalculate, through equa- 
tion (1) , the corresponding downwash distribution. Although this recalculated downwash 
and the initial input w(x,y) coincided at the collocation points as required, the agree- 
ment elsewhere was poor and remained poor through various modifications of the numeri- 
cal chordwise integration procedure used for the modes Bnm(B,q). (1) 
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This result is mentioned because this kind of representation, inspired like 

has been tried, often without satisfactory results, to analyze the aerodynamic forces on 
three-dimensional (finite-span) control surfaces. 

Bnm(9,q) (1) by the two-dimensional theory, has been for years a common approach that 

Neither the use of new flap modes, made with combinations of modes BFA(€',q), 
nor the use of a least-squares procedure (with 32 control points) for calculating the coef- 
ficients anm and brim had an appreciable effect of improving the solution. With the 
least-squares procedure? better shapes of the recalculated downwash distribution were 
obtained in the regions where some number of control points were concentrated, but the 
results remained poor in other regions of the wing. With a limited number of pressure 
modes, a more dense distribution of control points can average on the wing surface the 
good or  poor quality of the results but not make them substantially better. Alternatively, 
increasing the number of modes of pressure does not always improve these results but 
can even make them worse if  the solution does not converge. 

In the calculations for which the same number of control points and unknown coef- 
ficients anm and b,m were used, the location of the control points over the wing also 
showed a great influence on the results. An apparently insignificant change in the control- 
point locations can produce a drastic change in the shape of the recalculated downwash 
but, in general, without introducing any significant improvement in the total result. 

From these results, equation (7) is concluded to be an unsatisfactory representa- 
tion of the pressure distribution. 

Another possible source of trouble which can considerably influence the results 
is inaccuracy in the numerical integrations. Accurate techniques can be used to perform 
the numerical integration of functions which contain a logarithmic singularity, such as 
the Berthod-Zaborowski quadrature (a weighted Gaussian type of quadrature, see, e.g., 
table 9 in ref. 27). But in the present case, the kernel function introduces an additional 
problem (it approaches a chordwise step function in the vicinity of the collocation point; 
Le., as y - q - 0) which is difficult to treat and can be a source of important e r rors ,  
mainly when the control point is located very near the control-surface hinge. 
ical surface integration of a logarithmic singularity which terminates within the region 
of integration (such as that at the hinge of the usual control surface with a span smaller 
than the wing span) also presents some special difficulties. This is the kind of logarith- 
mic singularity that the functions Bnm(8,q) possess, as will be shown in a subsequent 
section herein. Nevertheless, experience gained during the preliminary calculations 
has given confidence in the accuracy of the integration procedure adopted (also described 
below) even though the quality of the pressure representation was not satisfactory. 

The numer- 

With the purpose of gaining better insight into the reasons why this representation 
of the pressure distribution was so poor, the downwash distribution which corresponds to 
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each mode of pressure used in equation (6) was studied. These distributions are called 
wing modes of downwash WA~,(X,Y) and flap modes of downwash WB,,(X,Y). 

Each downwash mode WA~,(X,Y) o r  W B ~ ~ ( X , Y )  comes from its related pres- 

The function wq becomes represented by the expansion 

sure  mode Anm(0,q) or Bnm(0,7), respectively, through the basic integral equation. 

where n = 0, 1, . . . nm, and m = 0, 1, . . . mmm. (The maximum values n m m  
and m m a  can be different in each summation.) 

The evaluation of this truncated expansion at some particular points (control points) 
on the wing surface gives the matrix expression 

from which it is possible to calculate the values of the weighting factors 
Good convergence of this downwash expansion and good conditioning of the matrix 
are qualities which are  sought when a collocation procedure is adopted. 

an, and brims 
[W] 

A convenient and possibly ideal choice of pressure modes Anm(0,q) and Bnm(0,q) 
to  be used in the pressure expansion would be that which originates a set of downwash 
modes Wnm(X,y) that not only is orthogonal but also converges rapidly (with a few of 
the lowest order modes) to a good approximation of the downwash for actual deflecting 
and deforming controls. Furthermore, the higher order terms should produce small and 
decreasing corrections to adjust closer to the desired downwash the approximation that 
results from the truncated expansion. 

These qualities are particularly important in cases where control surfaces are 
involved. The deflection of a control surface introduces a first-order discontinuity in 
the function w(x,y); that is, the downwash is a nonzero constant on the control surface 
and zero on the res t  of the wing. This elementary mode of downwash accounts for the 
deflection of a control surface in the function w(x,y). 
which the control surface behaves as a rigid structure, this downwash mode is the only 
one which introduces the logarithmic singularities in the pressure distribution. Sketch 3 
illustrates this first flap mode of downwash. 

Furthermore, for the case in 
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Sketch 3 

The sketch represents a cambered wing section, taken in a region where a control 
surface has been deflected, and the chordwise downwash distribution which corresponds 
to  this section, Also shown is the separation of the actual downwash w(x) into three 
modes of downwash: w&x) wl(x) , and ~ 2 3 ( ~ ) .  

further separated into two more elementary modes, as is illustrated in sketch 4. 
The mode w,(x) is the first flap mode of downwash. The mode w ~ ~ ( x )  can be 
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Thus, the downwash w(x) can be separated into the four elementary modes 

w(x) = wo(x) 4- w1(x) - w2(x) - w 3 m  (9) 

The mode wo(x) is one of the kind called wing modes of downwash WA,,(X,Y). 
(It could be any chordwise third-order mode, represented by the general expression 
W A ~ ~ ( X , Y ) . )  The modes wl(x), w2(x), and w3(x) are flap modes of downwash, which 
a re  defined by WB~,(X,Y). (They could be any one of W B ~ ~ ( X , Y ) ,  W B ~ ~ ( X , Y ) ,  or 
WBZ~(X,Y), respectively.) The mode wl(x) represents the first mode W ~ ~ ~ ( x , y ) ,  
when the downwash distribution on the control surface is a constant in the spanwise sense. 
This mode, together with a smaller contribution of the mode WB (x,y), which becomes 01 
important in cases where the control surface can experience an appreciable torsion, may 
be the only component of the downwash distribution w(x,y) responsible for the logarith- 
mic singularity of the pressure function in many practical calculations. 

Clearly, it would be useful to develop in the pressure expansion a term Boo(8,q) 
able to  originate a downwash distribution W B ~ ~ ( X , Y )  as close as possible to  this ideal 
mode wl(x). If none of the modes WB~,(X,Y) appear to  be a good approximation to  this 
ideal shape, a high number of modes may be required to  represent adequately the zctual 
downwash and, consequently, the corresponding pressure distribution. This characteris- 
tic will also aggravate the additional problems of convergence and good conditioning of the 
martix [w]. 

The "optimal location'' of control points actually in use (see refs. 2 to  6) is based 
on a separation of variables which does not always yield significant improvements in 
practice in comparison with arbitrary location, at least for low frequencies and simple 
downwash modes (see refs. 17 and 18, for example), and which does not apply to the case 
of control surfaces. Anyway, the results of lifting-surface calculations depend more 
directly on the capability of the downwash truncated expansion to approximate the func- 
tion w(x,y) than on the optimizing of the control-point locations. That does not neces- 
sarily mean that the search for a realistic optimal conditioning of the matrix [W] is 
unimportant for improving the results in calculations of wings with or without control 
surfaces. But it must be kept in mind that this optimal location depends essentially on 
the actual shapes of the modes Wnm(X,y), its validity being dependent on the capability 
of these modes to represent the actual downwash distribution on the wing. Furthermore, 
for the analytic expressions and integration procedures used herewith, control-point 
locations must be selected that are not too close to regions where the modes Wnm(X,y) 
can suffer appreciable distortions due to numerical e r rors ;  such regions are wing leading 
and trailing edges and control-surface boundaries. It is also recommended to  avoid, as 
much as possible, the nodal lines of the modes Wnm(X,y) and to  spread the control points 
on the regions where these downwash modes are widely different among themselves. 
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In figure l(a) is plotted the first downwash mode W(l) (x,y) obtained by the early 

calculations mentioned for a full-span flap on the wing with the parameters listed. (The 
superscript (1) is used to  distinguish these modes as exploratory.) Figures l(b) and 
l(c) show two higher order modes W(l) (x,y) and W(') (x,y). The mode Wgio(x,y) 

appears to be an unsatisfactory approximation to  the ideal shape wl(x) in sketch 3, 
and the higher modes can do very little to  improve this approximation. The modes 
W(l) (x,y) and W(l) (x,y) a r e  too much alike for numerical purposes, and this is a 

circumstance which affects adversely the conditioning of the matrix [W] . 

W A ~ ~ ( X , Y ) ,  W ~ ~ ~ ( x , y ) ,  and W ~ , ~ ( x , y ) .  The contrast between the good conditioning of 
these wing modes and the poor conditioning of the flap modes is evident. This is the rea- 
son why the results of calculations of pressure distributions on wings without control sur- 
faces are much better than those on wings with control surface. 

Bo0 

B20 B30 

B20 B30 

Figures l(a), l(b), and l(c) also show for  comparison the wing downwash modes 

These particular results show that any combination of wing and flap modes shown 
would have a poor capability for representing the desired downwash w(x,y) for a 
deflected flap and would cause a worsening condition of the matrix [W] if an attempt 
were made to  improve the results with additional higher modes from equation (7). 

In contrast, the two-dimensional wing theory from which the pressure modes 

Anm(f3,q) and Bnm(f3,q) (1) a r e  selected provides a good basis for comparison of these 
results. It is known from the existing literature (see, e.g., ref. 23) that for the analo- 
gous case of a thin planar airfoil with a deflected flap, a combination of only the two first 
modes  LA^(@) and LBO(@ is enough to  represent the exact solution of the lifting pres- 
sure  in steady flow. The te rm LAo(@ originates a downwash mode which is a constant 
on the total airfoil, and the te rm LBo(8) originates a downwash which takes a constant 
value on the flap region and another substantially different constant value on the rest  of 
the airfoil. That should be an ideal goal for the three-dimensional case too. But figure 1 
shows that this goal has not been achieved in the early calculations based on equation (7). 

These results make evident the need for. new pressure modes Bnm(f3,q) able to  
originate a set of better conditioned downwash modes Wgnm(x,y). 

Search for Surface Loading Functions 

Because of the desired nature of the downwash mode W B ~ ~ ( X , Y )  (as close as pos- 
sible to a constant value on the control surface and a different constant value on the rest  
of the wing), one cannot expect to get a general orthogonal set of modes Wnm(x,Y) that 
includes both wing and flap downwash modes. But it appears to  be possible to  get wing 
modes which are already fairly close to  a set of orthogonal functions (by combining the 
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cave corner at the hinge of an upward 
deflected control surface. From linear 
theory, the effect of a convex corner 
would be equal and opposite in sign. 
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I 
zT-------- 

Such a nonlifting wing with symmetric 
thickness and sharp leading edge is 
illustrated in sketch 5. On the basis of 
this hypothesis, it is expected that the 

Sketch 5 solution for the flow past the leading 
edge, including the corners, of the wing 

of sketch 5 can provide useful information on the analytical form of the local pressure 
distribution in the neighborhood of a control-surface hinge and edges. 

If ws(z,y,O) is the distribution of simple sources that matches the downwash dis- 
tribution on the upper surface of this wing (sketch 5) and ps(z,T,Z) is the associated 
pressure perturbation, then for the steady wing they are  related, according to linear 
theory, by the expression 

The advantage of this approach becomes apparent. Only simple sources need be con- 
sidered, and the desired pressure is directly obtainable rather than being contained within 
an integral of an integral equation. 
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Consider a function ws(i,f,O) defined on the wing surface by the series expansion 
of orthogonal te rms  

where the quantities dnr are constant factors whose numerical determination is of no 
concernhere,and 

- -  - 
p =  XT - xc 

2 -  The functions Pn and Pr are Legendre polynomials of arguments =(xco-z) and 
u 

(where [r/g indicates the integer part  of r/2 and f is a dummy argument), o r  
alternatively by Rodrigues' form 

This downwash (eq. (11)) originates a pressure 

(1 3) 

The integration with respect to 6 can be carried out in closed form so that the pressure 
is then represented by the expansion 



where CT and CH are the values that the indefinite integral n r  n r  

takes at the trailing edge = ZT and leading edge = Xc, respectively. 

The function rr(%-f,f,Z) is defined as 

When r 2 1, 

where Qr-l is a polynomial (not Legendre's second kind) of degree r - 1 and argu- 
ment $ - fcl or f - f c2 ,  and vr($) is afunction of (also of 2, f ,  and 2) and 
does not depend on i. Both can be calculated by the method of undetermined coefficients 
through the identity 

by matching on left and right sides the coefficients of each power of i ,  the coefficients 
themselves being functions of E ,  %, f ,  and 2. In equation (18), 

Expressions for Qrm1(f-i) and vr ( t )  for r up to  5 are given in appendix A. 

The local distribution in the neighborhood of the wing leading edge (which simulates 
a control-surface hinge) is given by the expression 

c. 

n,r 

By taking the limit 2 - 0, the local pressure istribution p (%,y,O) in the %?-plane is 
obtained. This function also represents the local pressure distribution which appears on 
the upper side of a flat lifting surface in the neighborhood of the hinge of an upward 
deflected control surface, when the downwash is zero on the wing and ws(Z,y,O) on the 

HS 
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control-surface region. The te rms  C ~ ~ ~ ( z , f , 0 )  of the resulting expansion a re  then 
pressure distributions associated with an orthogonal set of downwash modes. They con- 
tain the appropriate singularities that the hinge of a control surface introduces in the 
pressure distribution, and with the usual corrections to account for the effect of wing tips 
and leading and trailing edges (as in ref. l), they can serve to originate the flap modes of 
pressure Bnm(0,q) that a r e  sought for the lifting-surface case. 

The te rms  cHoo(X??,o), cH1o(Z,f,o), CH~O(~,Y,O), cHol(z,f,o), and cHo2(z,f,o) 
are given in appendix B. Since the main effect of deflection of the control surface is given 
by the mode Boo(0,q) and since the higher order modes Bnm(8,q) serve mainly as cor- 
rections of the distortion that the wing modes Anm(O,q) introduce in the downwash dis- 
tribution on the control-surface region, only a few flap modes of pressure Bnm(0,q) are 
expected to  be needed in most of the practical calculations. The relationship between the 
indices m and r is given subsequently in the development of higher order pressure 
modes, where it becomes necessary for m > 0. 

The te rm C ~ ~ ~ ( % , f , 0 )  has the expression (in dimensional coordinates) 

$2 - q2 + a2(i  - Yc1)2 - a(? - Y c l )  
C ~ ~ ~ ( Z , j i , 0 )  = 

which except for notation is the same as the local solution found by Landahl (eqs. (33)  
to  (35) of ref. 26, with reduced frequency set equal to zero). In reference 26, the pres- 
sure  distribution for an oscillating planar rectangular control surface was developed by 
the method of matched asymptotic expansions. 

One way of introducing the correct wing-edge behavior is by multiplying 
C H ~ ~ ( Z , ~ , O )  by the factor 

as in reference 26. The resulting flap pressure mode is denoted for a wing with partial- 
span flaps (as in fig. 6) by 

where the variables Z and 7 have been changed into 8 and q, respectively, and a 
superscript (2) is used to differentiate this mode from the finally adopted BOO(B,q). 
For a full-span flap (as in fig. 2), ycl = -1, yc2 = 1, and 17 I is replaced by q. 
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In figure 2,  is shown the downwash distribution W(2) (x,y) that the mode Boo (2) (e,$ 
Bo0 

originates when applied to  a square planform wing with a full-span flap qc2 = -qcl = 1.0. 
A good characteristic of this downwash distribution is that it has at the hinge nearly a 
first-order discontinuity in the chordwise sense, and this discontinuity has a nearly con- 
stant magnitude along the span. This quality is found in all the numerical calculations 

order discontinuity which is sought in the mode W (x,y). But the mode W(2) (x,y) 

also presents, for a reasonable amplitude of the discontinuity, the undesirable qualities 
of a high slope chordwise and a too high curvature in the spanwise sense. These qualities 
produce a general shape which is not close to the flat distribution (with a first-order dis- 
continuity on the control-surface contour) desired for the mode WBoo(x,y). 

performed with the mode Boo (2) (0 ,q) .  That means a good approximation to the ideal first- 

Bo0 Bo0 

There is another difficulty involved in the mode Boo (2) (0 ,q):  If s increases in such 

a way that the wing planform tends to become a two-dimensional wing with a deflected 
flap, the values of the pressure distribution on the wing also increase and tend to  infinity 
in the limit. This result does not make physical sense and indicates that the analytical 
expression of the mode must be corrected. 

This difficulty would not be present i f ,  together with each te rm C ~ ~ ~ ( ? , f , 0 )  in the 
expansion of the local pressure distribution p 

that the corresponding term c~,,(%,f,O), which also appears in the total solution 
ps(X,f,O), introduces in the limit when the magnitudes fc l  and fc2  increase in the 
mentioned way. 

( x , f , O ) ,  there had been included the effect 
HS 

Empirical modifications of pressure modes .- An attempt was  made to improve the 

mode B$)(S,q), and all the following higher order modes, by introducing the following 
empirical modifications to  equations (21): 

(1) For use on the lifting case, each term C~,,(%,f,0) has been "corrected" with 
a function which behaves as C T ~ ~ ( % , ~ , O )  (from eq. (15)) when fc l  - -00 and f c2  - 00 

but which obeys the trailing-edge Kutta condition rather than having the logarithmic 
singularity that each term C~,,(%,f,0) has on the trailing edge for the nonlifting wing 
of symmetrical thickness. 

(2) The variable x always appears in the combination 2 - Xc in each term 
cHnr(X,f,o) - 
Introduction of the same transformation as in equation (4) leads to  

5 - tc(q) = - --(COS b e - COS ec) 
b0 
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where 

Note that in the vicinity 0 =: Bc the quantity 

ICOS e - COS eCl - le - eclsin ec 

In order to  cause the functions Bnm(8,q) to  approach the two-dimensional pressure 
distribution of equation (7) (for nm = 00) as the wing planform tends toward a two- 
dimensional wing plus flap, wherever [ - &(q) appears, it is replaced by 

which is asymptotic to 5 - tC(q) as 5 + [,(q); that is, in the vicinity 0 = 8, 

1 - cos@ - 
2 sin 2 e, N le - eclsin ec  COS e - COS ecI 

which is the same asymptotic behavior as that expressed by equation (22b). In addition 
the following definition is introduced: 

(234 XT = x(n,ec,q) = - bg b 2 sin 2 ec 

(3) The semispan-semichord ratio s is replaced by an effective value 

S, = SES (234 

where E, is a span expansion-contraction factor that can be a constant o r  a span vari- 
able. The function of Es is to  make relatively stronger (Es < 1.0) or  weaker (Es > 1.0) 
the induced effect of the control-surface tips. A value of E, greater than 1.0 has the 
effect of putting the control tips farther away from the rest  of the control surface and 
wing. The effect of the control tip is thus attenuated and the pressure distribution in the 
central region of the control surface is closer to the two-dimensional distribution. When 

E, is given an appropriate value, it has a very noticeable effect of improving the down- 
wash distribution W (x,y). This value depends mainly on the wing and control-surface 

configuration, but it is also affected by the Mach number and possibly by the reduced fre- 
quency considered in the analysis of any unsteady case. The influence of this parameter 
and its order of magnitude for several configurations, as well as the influence of the Mach 
number, will  be discussed further in the section entitled "Results and Discussion." Since 
no practical relation for predetermining the appropriate value of E, is yet known, some 
numerical exploration in each particular case is recommended. The first mode Boo(B,q) 
can be programed with E, as an input parameter, and then several values of Es can 
be tested to  pick the one which gives the best downwash mode W ~ ~ ~ ( x , y ) .  

Bo0 
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With these three empirical modifications to  equation (21b), the first flap mode of 
lifting pressure for an unswept flap becomes 

where the absolute value is taken in order to make the expression applicable to  both 
right- and left-wing semispans, and where the first factor in the argument of the log func- 
tion (the one containing XT) is the correction factor resulting from modification (1) 
above. The multiplication of the log function by sin B/sin 8, as in equation (21b) is not 
needed because with the given modifications the function Boo of equation (24) has the 
desired zero lift at wing leading and trailing edges. Also note that 

I ql 

1 lim 
SeYc1--Oo 
seYC2-Oo 

BOO(8,V) = p In X(87@c'17) 

which represents the two-dimensional pressure distribution. (See eqs. (6) and (7) .) 

Pressure modes for swept controls.- As will be described in the section "Results 
and Discussion," the function Boo(8,q) has produced a downwash mode W B ~ ~ ( X , Y )  

1" 

arc tan mc 

- I (  Wing planform 
X 

Sketch 6 

24 

fairly close to the ideal function that is desired. 
But this pressure mode has been deduced under 
the assumption of a control-surface hinge 
placed perpendicular to the direction of the 
main flow. The numerical calculations have 
shown that when the hinge sweepback angle is 
large, the downwash distribution W B ~ ~ ( X , Y )  
becomes very distorted if the sweep is not 
accounted for, and a more general mode of 
pressure is needed that does account for the 
sweep. 

This more general expression has been 
obtained by returning to  the analysis of a thin 
wing of symmetrical thickness and a sweptback 



leading edge, as represented in sketch 6. The leading edge is represented by the straight 
line 

iic(f) = iic(o) + mcy (25) 

of slope mc. 

A constant downwash distribution has been considered, and the more general func- 
tion C H ~ ~ ( Z , ~ , O )  takes the form analogous to that for the unswept surface (eq. (21a)): 

From the relations 

and the use of the same modifications that were made to equation (21a) the definitive func- 
tion Boo(6,q) to be used in the definition of the flap modes of lifting pressure is 
obtained: 

where 
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and the log function approaches zero as 8 - 0 or 1~ at wing leading and trailing 
edges. As Se becomes indefinitely large, BOO( 0,q)  approaches the two-dimensional 
distribution . 

For the particular kind of planform that is considered, that is, with the flap hinge 
line parallel to the trailing edge, 

and 
3 
2s 

mc = t a n  A - -(1 - A) J 
When the slope mc = 0, equation (28a) reduces to equation (24) for the unswept wing. 

On the control-surface hinge, the function Boo( 0,q) has a logarithmic singularity 
which disappears beyond the tips s f  such a hinge. It also has the proper leading- and 
trailing-edge behavior, and is an analytic function on the rest  of the wing surface. 

Higher order pressure modes.- In the development of the higher order pressure 
modes, two circumstances must be accommodated. One is that there is an existing usage 
of the second subscript m of Brim( 0,q) as even for  spanwise symmetry and odd for 
spanwise antisymmetry. The other is that the subscript r on the spanwise varying 
Legendre polynomial Br  
values r = 0, 1, 2, . . ., 

introduced into equation (11) can take successive 
These circumstances a r e  accommodated by the 

following definition: 

Bnm(e,q) = 7pcnr(e,q) (r = 0, 1, 2, . . .) (30) 

where p = 0 for spanwise symmetry, p = 1 for spanwise antisymmetry, and 

m = 2 r + p  (31) 

The higher order functions Cnr(B,q) which appear in the definition of the flap 
modes of pressure Bnm(8,q) can be obtained by introducing the above-mentioned 
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modifications in the higher order te rms  C~,,(%,y,o) listed in appendix B. Then, since 

Boo(6,rl) = Coo(e,rl), 

where 

and 
tT(V) + Ec(r> 

2 tco(rl) = 

For the swept tapered wing with untapered flap which has been considered, Oc0 becomes 

Similarly, 
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where 

yc2 + yc1 

2 ‘  

yco = 

6, = 2 
yc2 - yc1 

and 

These five modes may be enough to represent the influence of the control surfaces 
on the pressure distribution in many practical calculations. But if still higher order 
modes a r e  needed, it would be possible to generate them by calculating the appropriate 
functions C H ~ ~ ( ~ , ~ , O )  in the way which has been indicated and applying the mentioned 
modifications to translate these functions to the lifting pressure distributions Cnr( 0 ,q ) .  

The functions C H ~ ~ ( ~ , ? , O ) ,  which come from calculations in which sweepback is 
not considered, are used to generate the general higher order modes. This way is chosen 
in order to simplify somewhat the analytical expressions obtained for the higher order 
functions Cnr(0,q). Anyway, an important influence of the sweepback effect is introduced 
in all these functions through the first-order mode Coo(0,q). 

RESULTS AND DISCUSSION 

The results presented in figures l(a), l(b), and l(c) were discussed in the section 
“Preliminary Investigation Based on Separation of Variables.” The rest of the results 
are now presented and discussed. Figure 2 applies to a square planform wing (aspect 
ratio of 1.0) with full-span flap hinged at 75 percent of the chord. Chordwise distribu- 
tions of downwash are plotted for the three span stations indicated, At the top is the 
downwash W (2) 

Bo0 
originated by the pressure mode Boo (2) (0 ,q)  in equation (21b), and at 
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the bottom is W B ~ ~  from pressure mode Boo(f3,q) in equation (24) with E, = 3/2. 
Both distributions display the desired characteristic of nearly a first -order discontinuity 
(finite jump) chordwise at the hinge line and the magnitude of the jump is nearly uniform 
spanwise. Of the two distributions, W B ~ ~  has the slight advantages of lower slope 
chordgise (away from the hinge) and less variation spanwise. 

Figure 3 applies to the same configuration as figure 2 and the effects are shown of 
decreasing the factor E, (eqs. (23d) and (24)) to three values successively lower than 
that at the bottom of figure 2. As E, is decreased, at first the chordwise slope of the 
downwash decreases both forward and aft of the hinge, but for the lowest value of Es 
(3/20), some irregularity appears just forward of and aft of the hinge. For this range of 
results, an intermediate value of Es most nearly gives the desired uniform step-function 
discontinuity from wing to flap. 

Figures 4(a) to  4(e) apply to a spanwise symmetric rectangular planform wing (the 
half-span is sketched on the figure) with an aspect ratio of 4.0, partial-span controls from 
0.3 to 0.7 of wing semispan and hinge at wing 3/4 chord. Chordwise distributions of 
downwash are shown at each of three semispan stations. In figures 4(a) to 4(e), Es has 
the values 3/2, 3/4, 1/2, 3/8, and 1/4, respectively. The figures show how effective the 
parameter Es can be; figures 4(b) and 4(c) show that Es in the neighborhood of 3/4 
to 1/2 produces a downwash distribution fairly close to the fundamental (first) flap down- 
wash mode that is desired. Figure 5 shows a thr.ee-dimensional view of the downwash 
distribution for E, = 1/2. 

Figure 6 shows for comparison the downwash distributions W(2) (x,y) originated 
Bo0 

by the pressure mode Boo (2) (8 ,q)  of equation (21b) for the same configuration as in fig- 

ure  4, The positive chordwise slope displayed is associated with the multiplying factor 

sin 8 in Bg(8 ,q) .  

Figures 7(a) and 7(b) show for the configuration in figure 6 the effect on W B ~ ~  of 
increasing the Mach number from 0 to 0.5 and 0.8, respectively. The value of E, was 
increased to 3/5 for what is judged a better quality of the downwash distribution than that 
in figure 6. For M = 0.8 the distribution is higher at the outboard station y = 0.8 than 
for M = 0.5, and a further variation of Es might have disclosed a better overall choice 
than the value 3/5. 

Figures 8(a), 8(b) , and 8(c) apply to an untapered wing with a flap like that of fig- 
ures  4 to 7 except that the wing is sweptback to 45O by shearing (full-span aspect ratio 
remains 4). Downwash distributions are plotted against local chordwise coordinates for 

(3) was obtained by the same three semispan stations. In figure 8(a), the downwash W 

applying the pressure distribution Boo of equation (24) that contains no provision for 
Bo0 
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sweep. The value of Es is 1/2. The need for improvement is apparent. In fig- 
ure  8(b), the results of using Boo of equation (28), that does account for sweep, are 
shown for E, = 1/2- The effect of increasing Es further to 3/5 is shown in fig- 
ure  8(c), where the downwash is more uniform at y = 0.8 than in figure 8(a), 

Figures 9(a), 9(b), and 9(c) apply to the same parameters as 8(a) , 8(b), and 8(c) 
respectively, except that Mach number has been increased from 0 to 0.8, and in fig- 
ure  s ( ~ ) ,  E, is 0.556. In comparison with the results for  M = 0, the downwash dis- 
tributions for M = 0.8 a r e  noticeably worsened but are still fairly good in figure 9(c). 

Figure 10 shows downwash distributions W B ~ ~ ( X , Y )  for a rectangular wing with 
an aspect ratio of 2, for M = 0 and E, = 3/5, that can be compared with the distribu- 
tions for the wing with a higher aspect ratio in figures 4(b), 4(c), and 5. A strong simi- 
larity is apparent. 

Figures ll(a) and l l(b) apply to a tapered, swept wing with partial-span constant- 
chord flaps. The taper ratio h is 0.6, the quarterchord sweep angle A is 35O, the 
ratio s is 2, the ratio p of flap chord to root half-chord is 0.4, and the parameter 
E, = 0.512. The downwash for  M = 0 in figure II(a) is good although improvement for 
y = 0.8 could be desired. In figure Il(b), M is increased to 0.8 and the distribution 
at y = 0.8 is noticeably worsened. Investigation of a range of E, might reveal a bet- 
ter overall choice. 

The discussion now turns from consideration of fundamental or first-order pressure 
and associated downwash modes to  consideration of higher-order pressure and downwash 
modes. A commonly used method for developing higher order pressure modes has been 
to multiply the fundamental mode by powers of (cos 6 - cos eC) , as in equation (7) It 
was desired to determine what would be the effect of such multiplication. The choice 
here is to use as the reference not the hinge line 6 = 6c, but rather 0 = 6,o for the line 
on the flap midway between its hinge and trailing edge. The very last te rms  that contain 
Coo(6,q) in equations (32a) and (33) a r e  of the type described. With the definitions 

the downwashes WB and Wb are originated and for the rectangular wing with an 

aspect ratio of 4 are shown in figures 12(a) and 12(b) for M = 0 and Es = 1/2. Inclu- 
sion of the quantities p and 1/12 has only quantitative, not qualitative, effects. The 
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downwashes W B ~ ~  of figure 4(c), Whl0, and Wh20 are for the same configuration 

and represent the first three terms of a series that could be combined linearly in an 
effort to f i t  a specified distribution. Hence, they are to be examined for the desired 
orthogonality. The downwash Wblo of figure 12(a) shows a chordwise slope and passes 
through zero as is appropriate for a chordwise second-order mode. The downwash 

of figure 12(b) shows relatively little of the curvature which would be appropriate 
for a chordwise third-order mode. Furthermore, Wblo  displays a noticeable resem- 

blance to both W B ~ ~  and Wbz0. Hence the set is not strongly linearly independent 
and is rather far from being orthogonal (with respect to a unit weighting function). The 

(2) resemblance of Wb to W 

bring a poor conditioning of the downwash matrix [W] of equation (8b). In addition, the 
capability for rapid convergence of the downwash expansion of equation (8a) (with a small 
number of modes) to the desired downwash distribution over the whole wing, might also 
be impaired. Therefore, the higher order pressure terms of the type Bi0(8,q) and 
Bbo(8,q) are judged to be less than adequate. 

tion (32a) and B20(8,q) from equation (33) produce the downwash distributions WBlO 
and W B ~ ~  of figures 13(a) and 13(b), respectively, for the same wing parameters as in 
figure 12. The distributions on the control, featuring the steep slope and passage through 
zero of WBlO and the strong curvature of WB20, a re  judged to represent a marked 
improvement toward achieving rapid convergence of the downwash series in a collocation 
procedure. The set W B ~ ~  of figure 4(c), WBIO (fig. 13(a)), and W B ~ ~  (fig. 13(b)) 
are not perfectly orthogonal over the flap surface but are probably close enough for  the 
downwash fitting process. 

wb20 

of figure 6 is even stronger. This resemblance would 
Bo0 10 

In contrast, use of the finally adopted pressure terms BlO(8,q) from equa- 

Figures 14(a) and 14(b) show the results of using the pressure modes B02(8,7) 
and B04(8,q) to produce the downwashes WE02 and wBo4, respectively. The latter 
a re  primarily spanwise varying second- and third-order modes. In figure 14(a), W B ~ ~  
shows a nearly linear spanwise variation on the control and nearly step-function discon- 
tinuities at the control ends. In figure 14(b), W ~ o 4  shows a parabolic curvature on the 
control and nearly step-function discontinuities at its ends. The variations of W B O ~  

and W ~ o 4  are markedly less on the wing than on the control. These characteristics 
are in accord with desired goals. 

CONCLUDING REMARKS 

For partial-span control surfaces of the trailing-edge-flap type with leading-edge 
hinge and sealed gaps, a series of lifting pressure distributions have been developed for 
deflected and deformed flaps on thin, swept, tapered wings for use in aerodynamic and 
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aeroelastic analysis. The development is based on the lifting-surface integral equation 
that relates lift and downwash. An important advance is made by hypothesizing an anal- 
ogy with the flow characteristics over a nonlifting wing with symmetric thickness dis- 
tribution and then applying the determined pressure perturbation characteristics to the 
lifting pressure on a wing with control. 

For lifting wings, the fundamental or first-order pressure te rm gives a downwash 
distribution that is a good approximation to the following: a small uniform downwash on 
the wing and a step-function jump to a large uniform downwash on the control. A chord- 
wise second-order te rm gives a downwash with strong linear chordwise variation, and a 
chordwise third-order te rm gives a downwash with strong chordwise curvature on the 
control; both downwashes are well behaved on the wing. Two higher order spanwise 
varying te rms  are also developed. These feature downwashes which have strong linear 
spanwise variation and strong spanwise curvature, respectively, on the flap and are well 
behaved on the wing. This type of lifting-pressure ser ies  is expected to lead to rapid 
convergence of the downwash collocation procedure for deflected and deformed controls 
and to provide an advanced basis for extension to the oscillating case of flutter. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 29, 1969. 
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APPENDIX A 

EXPRESSIONS FOR THE POLYNOMIALS Qr-l(f-f) 

AND THE FUNCTIONS +(E) 

Expressions far the polynomials Qr-l(y-$ and the functions V r ( E )  from equa- 
tion (17) for r up to  5 are as follows: 

4 
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APPENDIX B 

EXPRESSIONS FOR THE FUNCTIONS C H ~ ( ~ , ~ , O )  FOR 

THE CONFIGURATION IN SKETCH 5 

Expressions for the functions c ~ ~ ~ ( X , j i , O ) ,  CHl0(z,f,O), C~2o(z,f,O), 

CHo1(z,f,o), and cHo2(?,7,0) for the configuration in sketch 5 are as follows: 

1 I/(% - zc)2 + P2(7 - YCJ2 - P(Y - Y C l )  

i(z - :c)2 + P(7 - Yc2) 2 - P(7 - YC2) 

CH (2,f,O) = - In 00 

I} 2 U'C-; - Q2 + P2(f - fC2) + (2 - zc) 
- (7 - Yc2) In - [ P 
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APPENDIX C 

NUMERICAL INTEGRATION 

The wing modes of pressure Anm( 0,y) can be integrated by some of the already 
developed and well-known procedures. (See refs. 1 to 6.) For the present calculations, 
the method of integration described in reference 1 is used. This method can also be 
applied to integrate the flap modes of pressure Bnm(B,y) if some modifications are 
introduced into the chordwise integration. 

Each mode Bnm(e,q) is related to its associated flap mode of downwash 
Wgnm(x,y) through the following eq res s ion  that results from substituting equations (3) 
and (8a) into equation (1): 

where the relation between p, m, and r is given by equation (31) and that between 
Bnm and Cnr by equation (30). 

Special care is needed in the numerical evaluation of the chordwise integral 

Fnr(q;x,y) = JOT cnr(e ,q)z  sin 6 de (C2) 

The main difficulty comes from the logarithmic singularity that the function Coo(f3,q) 
has along the control-surface hinge. This singularity also appears, through the influence 
of the same COo(e,q), in all higher order functions Cnr(8,q). 

ln( 16 - eCl sin 0.) can be extracted from the functions Cnr(e,q) and the more simple 
In cases of a full-span-flap configuration, the elemental logarithmic singularity 

integral 

can be evaluated in three steps: 

or 
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where 0, and 0c represent the chordwise coordinates of the control point and the 
control-surface hinge, respectively, at the station q. The integrals from 0 to 0, and 
from 6, to 7~ c,an be evaluated by a Legendre-Gaussian quadrature, with unity as the 
weighting function. The rest of these integrals, in which eC appears as a limit of inte- 
gration, can be evaluated by the Berthod-Zaborowski quadrature (see table 9 in ref. 27), 
which provides highly accurate numerical results. 

But this procedure of integration cannot be applied to the more general and common 
case in which the control-surface spans are smaller than the wing span. Further, it is 
not feasible to divide the wing span in several regions isolating those where the control 
surfaces are located because, in spite of the fact that the function Coo(0,q) is not sin- 
gular at any point outside a control-surface hinge, it has numerical values that increase 
without limit as the hinge end is approached. This effect introduces an important diffi- 
culty in the numerical integration of the spanwise regions which do not have a control 
surface. 

The adopted solution has been to extract (subtract and add) the function 
In No(0,0, ,q) where 

from the expressions Cnr(6,q) and evaluate its chordwise integration in closed form. 
Since the function In NO(0,0c,q) is an elementary representation of the singular part of 
the functions Cnr(6,q), the expressions which remain as a result of this extraction can 
each be integrated numerically without difficulty when suitably arranged. 

The singular part of each function Cnr(0,q) is defined as In Nnr(0,BC,q) where 

for COO(0,r7), 

N00(B ,0c 97) = no(?m(e, 0, ,TI) (C 5) 

and so on. 
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For general nr ,  from equation (C2), 

Then, with the definitions in equations (C5) to (C7), the problem is reduced to the numeri- 
cal integration of the expression 

-71 
F;,(q;x,y) = 1 In Nnr(O,Bc,q)Z sin 0 d0 (C9) 

0 

By introducing the function In No(B,8,,q), this expression becomes 

where 

and where Hnr(@,q) is not singular at 0 = 0 ~ .  

With the definition 

which is zero at 0 = B c ,  then 

where 

(Equation continued on next page) 
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into the three intervals 

The integrals lo* Hnr(e,q>de and Jon @(8,q)dB are evaluated by Gaussian quad- 

ratures,  with unity as a weighting function, once they are divided 
defined in equation (C3). 

For the planform considered, 

" I  ec = n- - a r c  cos 

and 

tan A - A(1 - ~jj - x 2 
1 - y(l - A) 

8, = a r c  cos 

When the function A(O,,q) is evaluated at the points I q I = ycl or I 771 = yc2, or 
at any point very close to ycl or yc2, a minor numerical difficulty appears. It comes 
from the t e rm 

and the equivalent te rm for yc2 in equation (C13). 
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The logarithmic functions are indeterminate at the points 171 = ycl and ] = yc2, 

specify two narrow bands: 

and 

and define as zero therein the value of the products ( ycl - ]VI)and (Yc2 - IrlI)multi- 
plied by their respective logarithmic functions. The value of E used in the calcula- 
tions is 10-10. 

The same difficulty appears in the nonsingular parts of the functions Cno(8,r]) 
(the parts that do not include Coo) and the same preventive measure is used. 

41 



REFERENCES 

1. Watkins, Charles E.; Woolston, Donald S.; and 
Kernel Function Procedure for Determining 
Steady Finite Wings at Subsonic Speeds. 

2. Laschka, Boris: Zur Theorie der harmonisch schwingenden tragenden Flache bei 
UnterschallanstrGmung. Z. Flugwissenschaften, Jahrg. 11, Heft 7, July 1963, 
pp. 1-292. 

3. Davies, D. E.: Calculation of Unsteady Generalized Airforces on a Thin Wing Oscil- 
lating Harmonically in Subsonic Flow. R. & M. No. 3409, Brit. A.R.C., 1965. 

4. Richardson, J. R.: A Method for Calculating the Lifting Forces on Wings (Unsteady 
Subsonic and Supersonic Lifting-Surface Theory). R. & M. No. 3157, Brit. A.R.C., 
1955. 

5. Hsu, Pao-Tan: Some Recent Developments in the Flutter Analysis of Low-Aspect- 
Ratio Wings. Proc. Nat. Specialists Meeting on Dynamics and Aeroelasticity 
(Fort Worth, Texas), Inst. Aero. Sci., Nov. 1958, pp. 7-26. 

6. Multhopp, H.: Methods for Calculating the Lift Distribution of Wings. (Subsonic 
Lifting-Surface Theory). R. & M. No. 2884, Brit. A.R.C., Jan. 1950. 

7. Flax, A. H.: Reverse-Flow and Variational Theorems for Lifting Surfaces in Non- 
stationary Compressible Flow. J. Aeronaut. Sci., vol. 20, no. 2, Feb. 1953, 
pp. 120-126. 

8. Stark, Valter J. E.: A Method for Solving the Subsonic Problem of the Oscillating 
Finite Wing With the Aid of High-speed Digital Computers. SAAB TN 41, SAAB 
Aircraft Go. (LinkGping, Sweden), Dec. 16, 1958. 

9. Destuynder , Roger: Utilisation des Mesures Locales de Pression Instationnaire Pour 
la Determination des Coefficients Aerodynamiques. La Rech. Ahrospatiale, no. 102, 
Sept.-Oct. 1964, pp. 35-42. 

10. Falkner, V. M.: The Solution of Lifting-Plane Problems by Vortex-Lattice Theory. 
R. & M. No. 2591, Brit. A.R.C., 1953. 

11. Dulmovits, John: A Lifting Surface Method for Calculating Load Distributors and the 
Aerodynamic Influence Coefficient Matrix for Wings in Subsonic Flow. Rep. 
No. ADR 01-02-64.1, Grumman Aircraft Eng. Corp., Aiig. 1964. 

12. Relotserkovskii, S. M.: Calculating the Effect of Gusts on an Arbitrary Thin Wing. 
FluidDyn., vol. 1, no. 1, Jan.-Feb. 1966, pp. 34-40. 

42 



13. Belotserkovskii, S. M.: Osobennosti Rascheta Obtekaniia Kryl'ev Slozhnoi Formy v 
Plane p r i  Dozvukovykh Skorostiakh (Special Features of the Calculation of Flow 
Past Wings of Complex Planform at Subsonic Velocities). Izv. Akad. Nauk. SSSR, 
Mekh. Zhidk., Gaza, Nov.-Dec. 1966, pp. 74-80. 

14. Dat, Roland; Leclerc, Jacques; and Akamatsu, Yoshio: Optimisation de L'emploi de 
la Theorie de la Surface Portante en A6ro6lasticit6 Subsonique. La Rech. 
Aihospatiale, no. 113, July-Aug. 1966, pp. 37-52. 

15. Van de Vooren, A. I.: Some Modifications to  Lifting Surface Theory. J. of Eng. 
Math., vol. 1, no. 2, Apr. 1967, pp. 87-102. 

16. Panchenkov, R. N.: Nelineinaia Teoriia Nesushchei Poverkhnosti Proizvol'nogo 
Udlineniia. (Nonlinear Theory of a Lifting Surface of Arbitrary Aspect Ratio.) 
Gidrodinamika Bol'shikh Skorostei, I. L. Rozovskii, ed., Izdatel'stvo Naukova 
Dumka (Kiev), 1967, pp. 26-30. 

17. Darovsky, L.; and Dat, Roland: Determination des Forces Aerodynamiques 
Instationnaires Tridimensionnelles. AGaRD Rep. 512, June 1965. 

18. Zwaan, R. J,: Some Comparative Calculations With the Lifting Surface Theory of 
Laschka for Circular and Elliptic Wings Oscillating in Subsonic Flow. 
NLR-TN F.241, Nat. Aero- Astronaut. Res. Inst. (Amsterdam), Sept. 28, 1964. 

19. Yates, E. Carson, Jr.: A Kernel-Function Formulation for Nonplanar Lifting Sur- 
faces Oscillating in Subsonic Flow. AIAA J., vol. 4, no. 8, Aug. 1966, 
pp. 1486-1488. 

20. Landahl, M, T.: Kernel Function for Nonplanar Oscillating Surfaces in a Subsonic 
Flow. AIAA J., vol. 5, no. 5, May 1967, pp. 1045-1046. 

21. Betz, A.; and Petersohn, E.: Zur Theorie der Querruder (Theory of the Rudder). Z. 
Angew. Math. Mech., vol. 8, no. 4, Aug. 1928, pp. 253-257, 

22. Pearson, H. A.: Theoretical Span Loading and Moments of Tapered Wings Produced 
by Aileron Deflection. NACA TN 589, 1937. 

23. Theodorsen, Theodore: General Theory of Aerodynamic Instability and the Mecha- 
nism of Flutter. NACA Rep. 496, 1935. 

24. Hsu, Pao-Tan; and Weatherill, Warren H.: Pressure Distribution and Flutter Analy- 
sis of Low-Aspect-Ratio Wings in Subsonic Flow. ASRL Tech. Rep. 64-3 (Contract 
No. Noa(s) 55-771-c), Massachusetts Inst. Technol., June 1959. 

25. Berman, J. H.; Shyprykevich, P.; Smedfjeld, J. B.; and Kelly, R. F.: Unsteady Aero- 
dynamic Forces for General Wing/Control-Surface Configurations in Subsonic Flow. 
AFFDL-TR-67-117, Pts. I and 11, U.S. Air Force, May 1968. 

43 



26. Landahl, M.: Pressure-Loading Functions for Oscillating Wings With Control Sur- 
faces. AIAA J., vol. 6, no. 2, Feb. 1968, pp. 345-348. 

27. Stroud, A. H.; and Secrest, Don: Gaussian Quadrature Formulas. Prentice-Hall, 
Inc., c.1966. 

44 



N m > "9 

f 
\ 

X 

0 
Ln rn 

0 
0 
N 

0 
L n  - 0 0 

0 m 

3: 

0 1  

Ln 

0 - 0  

3" Trn 3 
0 
LA 

I 

0 

VI 
C 
0 
U 
17 

.- 
n .- 
L 
c, 
VI 

73 
.- 
E 

E 
VI 
VI 

Q 

0 

e 

V 
X 

o x  

0 

0- 
0 1  - 

I 

!z 
L - 
S 
M 
1 

'0 S 
m 

45 



m 
c 
0 .- 

X 

a3 Ln N . I  

x 

+J 
3 
Q 

I 
.- 

u (u -0 

9 X 

I I I I 
6 Ln 0 

0 

0 27- L n  
I 

N Ln h 
I I 

L n  ff 
I 

46 



x 

I I 
I 
I 

I 
> I I 

I 

I I I 
I I I 

- 
xu 
O Y  

q_ 

m 
I 

- 
- 

1 

+ 
- 0  
- M  - 3- 

- 

V 
X 

0 

- 
I 

-1 0 

X 

.- 

- 
0 

aM 
3 

0 - 

XU 

o x  

0 

c 
I 

I I I I I 
5 L n  0 

3 
I - Ln 0 Ln - c I I 

47 



L n N  

0 0  

II II II 

> > 7 .  

09 
0 

0 

X 

co L n N  

0 0 0  

II ll II 

> > >  

. .  

I I I 
0 0 0 0 
u3 4- N 

0 - 

X" 

o x  

0 - 
I 

48 



\ \ Y  

I I 1 1 

0 - 

XU 

o x  

0 - 
0 0 0 0 .I 

N 
0 
\D 3 N 

co LnN 

0 0 0  

II II I1 

* . .  
0 - 

XU 

o x  

0 - 

II 
IA 
W 

0 - 

2 

o x  

0 - 
0 0 0 0 0 I  m w -  7 

0 
0 

P 

0 0 0 0 0 1  
M N -  - 

I 

0 
0 

2 

*. V'N. 

--. m 
-0 

e m 

9 
;;;. 
d 

I1 

--. m 

VI 
W 

z 
3 
3 n 
N 
W 
L 
S Ul 

S 

M 

.- 
c 

.- 
VI m 

m 

U c 
Ul 
S 

n - - 
m 

.- 
3 
a, 

5 
VI 

W J Z  
c 

L 0 c 

3 - 
c 0 
c m 
S 
0' W 

0 

.- 

c 

- c 
CD 
m 
0 0 

0 U 

2 
? 
2 
VI 
(u L 
n 
E e 
8 
c 

VI 

c 0 

3 
.- 
c 

n .- 
L c VI 

v 

.s 
VI m 

.- 

E 
2 
n 

r.i 
W L 

S (3) 

U 
.- 

49 



X 

c 

S 
m 
CL 
v) 

0 1  
q _ '  

m 
I 

c 

I 

3 

0 
Ln 
c 

0 
0 
c 

0 
0 

Srn 

0 

L-i 

I1 

. M 

VI w - 
m - 

50 



"9 
0 

II 
7. 

L n c v  

I I 

"9 

I I 
7. I I 

I I 

- 1  
I 

I 

I 
I I 

L I 
' I  

4 

X 

- c  m 
Q 
v) 
I 

0 %  

m 
I 

c 

7 

I 

I I I 
0 0 0 

0 Ln - in 
c 

N 

0 

II 
7. 

9 

4- 

I 

a 
I 

"9 
I 

9 
c 
I 

0 
0 

9 

51 



X 

- c  m 
Q 
v) 

0 1  
4- - 
m 
I 

I I i I 
0 0 0 0 0 1  
IA 0 Ln IA - - I 

d 
W 3 
8 

c 0 u 
.- 
c 

ti 
W L 

3 m 
Y 
.- 

52 



Ln 

X 

I 

I I I 
0 0 0 
Ln 0 Ln 
c I- 

0 * 
I- 

03 

\o 

XU 

4- 

hl 

0 

hl 

I 

-3 
I 

\o 

I 

0;) 

I 

0 

I 
c 

0 
0 

53 



\ 

- 
0 0 
0 Ln - 

0 
0 

3* 

54 



I 
I 
I 
I 
I 
I 

9 I 

I 
I 
I 
I 
I 
I 
I 
I 

\ 

\ 

0 

mo - 
3 o  0 0 1  

0 0 
N c 

55 



0 

c 

I 

c 
m 
h 
v) 
I 

?- 

m 
I 

c 

I I I I 
0 0 
0 Ln 
N - 0 0 

0 L n  - 0 

0 
c 

co 

\I) 

u 
X 

3 

N 

0 

hl 

I 

3 
I 

\o 

I 

co 
1 

0 - 
I 

0 
Ln 

I 

u; 
U c m 
Q 

Y) al L 

S m .- 
L 

c 

VI m 

a m 
L 

-0 c m 

S 

.- 

- 

m 

3 
.- 
I m 
S 

S m 
u W L 

- 
m 

c 

c 0 .- 
c 

x S  m 

(3' W 

L 
0 

W -0 

E" 
0 L 

S VI VI 

2 n 

Y) 

c 0 

S 
.- 
c 

n .- 
L c 
Y) .- 
-0 

S 
VI m 

E 
2 
n 

56 



X 

c o r n  N 

II: 
m I t 

t 
Q I I 

I 
I I 

rc I I 
I I I m 
I I I 

I I 

> -  

1 1  I I 

4 

o ?  r 
c 

- ! 
I 

I I I 

3 

hl 

0 

N 

1 

4- 
I 

u3 
I 

a3 

I 

0 -_. 

S 

v) m 

.- 

n m - 
c 
U 
S m 
m 
8 .- 
3 
L m 
3 

S m 

- 
m 

c 

I 

a, 

% 

5 
v) 

m 
5 

s 
L m 

0 0 

P 

57 



co Ln N 

I 
I I 

X 

c 

0 

- 
I 

0 
L n  - 0 0 

0 Ln 
c 

0 
c 

co 

ul 

u 
X 

4- 

N 

0 

c\I 

I 

3 
I 

ul 
I 

co 
I 

0 - 
0 0 1  

L n  
I 

X 

0 
0 

Brn 

58 



L I I 
0 
L n  - 0 0 

0 Ln - 
n o  
m o  
W 

3* 

0 0 1  
L n  
1 

59 



v) 
I 
tc - 
m 
I 

1 I I 
0 0 0 0 
Ln 0 ln - c 

0 
0 

3" 

60 



X 

1I e 
Q 
v) 

- 
0 I 

0 0 
0 m 
c 

0 
0 

=L” 

4- 

r\i 

0 

cv 
I 

4- 
I 

ul 
i 

co 
I 

0 
c 

0 

ui . 
I X  T 

VI 
w 

5 .- 
3 

61 



I 

0 
Ln 
c 

0 0 
0 Ln 
c 

n o  
M O  
- M  

3 

I 
0 
Ln 

I 

62 



S m 
n 
ul 
I 

l4- 

m 
I 

- 

0 
L n  
c 

0 0 
0 In - 0 0 

L n  
I 

0 
c 

co 

\o 

u 
I X  

4- 

N 

0 

hl 

I 

4. 
I 

Q 

I 

co 
I 

0 - 
I 

N. 

I1 
I X  '= 

VI 
w 

IJ 

3 
c .- 

n 
1 

63 



0 
Ln 
c 

0 0 
0 Ln 
c 

0 

0 
c 

co 

a 

V 
I X  

3 

cv 

0 t x  

cu 
I 

3 
I 

a 
I 

co 
I 

0 

I 
c 

0 
0 

3" 

64 



hl 
Ln a 3 -  

- 0  
0 0 

I1 
11 I1 

7- r r 

> 

I I 
I 

I -  I 

I I I 
I I I 

I I I 
I I 
I I 

I I 
I I I c 

- -  I 

I I 

i I 

I 1 I I  I 

I 
I I 0 

1 
' I  

1 I 
0 0 
0 Ln - 

0 
0 

3" 

65 



I 
S m a 
v) 
I 
G 

m 
I 

0 0 0 
0 L n  
c 

0 - 

co 

a 

u 
I X  

4- 

N 

0 

N 

I 

4- 
a 

u3 
I 

03 
I 

0 - 
I 

66 



3 

I I I 
0 0 0 o r  
0 v\ L n  

I - 
0 
0 

67 



X 

a3 Ln N 

I 
- 

1 1  I 
I 

I I 
> I I I I !  ~0 

I I I 
I I I 
I I -  

I 

I I I I 
0 0 0 0 
Ln 0 in 
c_ I 

0 
c 

a3 

a 

0 
X 

4- 

N 

0 

N 

I 

3 
I 

a 
I 

a3 
I 

0 
c 

- 3" 

68 



X 

co 

=4 

L I I 
0 0 0 0 
In 0 m 
c ._. 

0 
c 

co 

o x  

hl 

I 

u2 
I 

co 
I 

0 

I 
- 

69 



X 

I 

U 
c m 

r m z 
V 

U 
c m 

70 



> 

2 t 

- 
I 

I 

I I I 
I I 
I 1 

I 
I 

I ! 1 1  
0 1 1  I 

I - 

0 0 0 
0 Ln 

0 1  
Ln 

I 

0 
N 

3* 



x m - h  
* . .  . 

I 

- 0 - x  
I 

h 

I I 
0 0 0 
0 Ln - 

N 
0 

9 

72 



X 

p. 

0 

II 

. 
I 

Ln - h a  . . .  

K 
((1 a 
In 
I v- 
((1 
I 

c 

- 0 -  X 
I 

0 0 0 m Ln 
I .;5 

3* 

0 
c 

a 

co 

h 

\z) 

>. 

Ln 

3 

M 

N 

c 

0 

NASA-Langley, 1969 - 1 L-6305 73 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE AND FEES PA 
NATIONAL AERONAUTICS 

SPACE ADMINISTRATIO 

POSTMASTER: If Undeliverable ( Section 
Postal Manual ) Do Not R 

“The aeronazltical and space acJvities of the United States shall be 
conducted so as t o  contribute . . . to  the expansion of human knowl- . 
edge of phenomena in the atmosphere aizd space. T h e  Adnzinistration 
shall provide fo r  the widest practicable and appropriate dissenzinatiaiz 
of inforniation concerning its actifhies and the resalts thereof.” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

(I 

TECHNICAL TRANSLATIONS: Information 
piiblished in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 

and Technology Surveys. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

. Tfchno~ogy Utilization Reports and Notes, 

Details on the availability of  these publications may be obtained from: 

’SCIENTKIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


